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Information-Theoretic Distance Measures and a Generalization of Stochastic Resonanc
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We show that stochastic resonance (SR)-like phenomena in a nonlinear system can be described in
terms of maximization of information-theoretic distance measures between probability distributions of
the output variable or, equivalently, via a minimum probability of error in detection. This offers a
new and unifying framework for SR-like phenomena in which the “resonance” becomes independent
of the specific method used to measure it, the static or dynamic character of the nonlinear device in
which it occurs, and the nature of the input signal. Our approach also provides fundamental limits
of performance and yields an alternative set of design criteria for optimization of the information
processing capabilities of nonlinear devices. [S0031-9007(98)07277-9]
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The stochastic resonance (SR) effect [1] is genera
quantified in terms of a maximum (as a function of the in
put noise intensity) of a performance measure, e.g., out
signal-to-noise ratio (SNR). However, a complete cha
acterization of system performance, in the presence
underlying randomness, requires knowledge of the who
probabilistic structure of the output, and this can be ful
retrieved from the spectral properties only when the sy
tem is linear, and operated in the Gaussian noise regim
Hence, any measure of information processing perfo
mance of a nonlinear system, based on spectral pr
erties alone, will capture only a few aspects of syste
performance. Indeed, any definition of SR used as a g
eral measure of information processing performance m
utilize the whole probabilistic structure of the problem
Moreover, in order to have practical applicability for
given class of problems the definition must represent
fundamental (or universal) limit of performance for thi
class. For instance, in detection applications a defi
tion of SR must be linked to the limits of detectability
of a signal, otherwise the “best” preprocessor (the o
giving the best “resonance” according to the SR defin
tion) may not be part of the optimal preprocessor-detec
combination.

We consider here the problem of detecting a nois
corrupted signal that has passed through a nonlin
system. An alternative definition for SR-like effects
based on information-theoretic distance measures betw
probability distributions, is proposed: the minimal achiev
able probability of error in detection, on the system ou
put. The statistical framework for optimal detection i
that of binary hypothesis testing: decide which of tw
given probability distributionsp0 (the correct distribution
under the hypothesisH0) or p1 (the correct distribution
under the hypothesisH1) is the correct one for an ob-
served random quantityj. In this general formulation,
based onprobability distributions, there is a strong cou-
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pling to basic information processing capabilities/ limit
that can be exploited to characterize system behavior.

Information-theoretic concepts such as entropy and m
tual information have been used previously in the stu
of SR [2]; however, the resonance was quantified via
input-output matching of signals, and not via the sepa
tion of output probability distributions. The definition o
SR in terms of an optimal detection formulation has be
applied recently [3], but only to detectors operating on th
spectrum of the signal; this represents a restriction in d
tector structure. Our results will, therefore, compleme
and generalize that work in several aspects. The defi
tion used here is completely general and applicable to a
type of (static or dynamic) nonlinear device, operated in
noisy environment.

A common (and fundamental) criterion of detecto
optimality [4] is minimization of the error probabilityPE

defined as

PE ­ qPF 1 s1 2 qdPM , (1)

where PF is the probability of false alarm (decideH1
when in factH0 is true), PM is the probability of miss
(decideH0 when in factH1 is true), andq and 1 2 q
are thea priori probabilities ofH0 and H1, respectively.
We see thatPF and PM together uniquely determine
the probability of errorPE . Another common optimality
criterion is maximization of the probability of detection

PD ­ 1 2 PM (2)

(decideH1 when H1 is true) given a specified maxima
false alarm levelPF # a, which is the Neyman-Pearson
(NP) formulation [4]. The optimal detector for both o
these criteria (and others) takes the form of a likelihoo
ratio (LR) test, i.e.,

decideH0 if
p1sjd
p0sjd

# g vs decideH1 if
p1sjd
p0sjd

. g ,

(3)
© 1998 The American Physical Society
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where p1yp0 is the likelihood ratio of the two distribu-
tions p0, p1 that characterize the observed random var
able j under hypothesesH0 and H1, respectively. The
thresholdg is chosen asqys1 2 qd in the case of mini-
mizing PE , and is minimized subject toPF # a in the
NP case.

Given the LR detector, it is intuitively clear that the bes
possible detection can be achieved when the probabil
distributionsp0 andp1 are separated as much as possibl
in some sense; this would correspond to a maximizati
of the statistical “visibility” of the signal in the noise.
Indeed, there is a strong connection between detecti
detector performance, and information-theoretic distan
measures such as the Ali-Silvey distances [5]. The
distance measures are functionals of the likelihood ra
of the form

dsp0, p1d ­ h

" Z
f

√
p1sjd
p0sjd

!
p0sjddj

#
,

where f is a continuous convex function andh is an
increasing function. One notable example is obtained f
hsxd ­ x and fsxd ­ 2 logx which yields the relative
entropy (or Kullback-Leibler distance). Another one i
thedE divergence defined as

dE sp0, p1d ­
Z É

s1 2 qd
p1sjd
p0sjd

2 q

É
p0sjddj (4)

for which we have the well-known [5] relation

P̃E ­
1
2 2

1
2 dE sp0, p1d , (5)

where P̃E is the probability of error of theoptimal
detector, i.e., theminimal probability of error,which is
attained by the LR detector when the threshold is set
g̃ ­ qys1 2 qd. Thus, P̃E and dE uniquely determine
each other via a monotone function and are equivale
This establishes the connection between informatio
theoretic distances and detection. Moreover, it follow
that maximization ofdE in (4) over parameters for the
output of a device is equivalent to a minimization ofP̃E

for detection on the output, and these two quantities bo
represent relevant theoretical limits of performance for
device used as a preprocessor in detection.

It is a standard property of Ali-Silvey distances tha
a nonlinear transformation cannot increase the value
any given distance (e.g.,dE ) between two distributions
[5]. Thus, it is clear that a possible alternative definitio
of SR is the local maximization (over parameters) ofdE

(or minimization ofP̃E) for the output distributions corre-
sponding toH0 andH1, respectively, given a fixed value
of dE (or P̃E) for the corresponding input distributions
Alternatively, an output-input ratio (which cannot excee
unity) of dE divergences could be considered.

In the NP formulation, detector performance is ofte
evaluated via plots of the so-called receiver operatin
characteristics (ROCs) [4] in whichPD is expressed as
a function of PF . To generate a ROC, one lets the
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thresholdg in (3) run through all values ins0, `d; this
yields all possible pairs ofPF and PD . In particular,
for the (“optimal”) threshold̃g ­ qys1 2 qd the resulting
PE s­ P̃Ed is directly linked to thedE divergence via
(1), (2), and (5) (since (1) and (2) then deliver optim
values). This means that from a family of ROCs index
by some parameter (such as input noise variance), one
obtain a plot of howdE varies by simply picking from
each ROC the value ofPE obtained for the threshold̃g
and plotting the correspondingdE against the parameter
Thus, the ROCs for the optimal detector contain all t
information needed to determine an information-theore
limit for separation between signal and noise.

We now compute the ROCs for a specific nonlin
ear device, the single junction (rf ) SQUID operatin
in the dispersive (i.e.,nonhysteretic) mode [6,7]. The
magnetic fluxxstd (expressed as the dimensionless r
tio of the actual magnetic flux to the flux quantum
F0 ; hy2e) through the loop can be described by th
equation of motiontL

dx
dt ­ 2U 0sxd 1 xe, whereUsxd ­

1
2 x2 2

b

4p2 coss2pxd is the potential energy function and
b ; 2pLIcyF0 is the nonlinearity parameter (L and Ic

are the loop inductance and the junction critical cu
rent, respectively). The externally applied magnetic fl
componentxestd ­ x0 1 xistd 1 ystd is the sum of a dc
level x0 ; 1

2 (to obtain a symmetric transfer characte
istic), an input signalxistd (to be specified later), and
noiseystd. The noise, regardless of its origin, is usual
effectively band limited by the SQUID bandwidtht21

L ;
it is modeled as zero-mean Gaussian, with an expon
tially decaying normalized correlation coefficientRstd ­
s22kystdyst 1 tdlt ­ e2jtjytc , tc being the noise corre-
lation time, ands the standard deviation. For our resul
(and in many practical applications) the noise bandwid
t21

c is considerably larger than the signal bandwidth,
that the noiseystd appears white relative toxistd. In most
practical cases we also havet21

c ø t
21
L , so that the equa-

tion of motion reduces to the quasistatic form (consider
through the remainder of this work)U 0sxd ­ xe.

The SQUID output is characterized by the “shieldin
flux” xsstd ; xstd 2 xestd. From the quasistatic equatio
of motion we can obtain the input-output transfer cha
acteristicxsstd ­ gsssxistdddd by solving forxs as a function
of xi [with x0 ­ 1

2 and ystd ­ 0]. This has been done
analytically [6,7] in the nonhysteretic regime0 # b , 1,
to which we confine ourselves. The transfer functiong
is plotted in Fig. 1;g is periodic in xi (only one cycle
shown), the slope of the central “linear” regime near t
origin increases, and the minimal distanceDxi between
extreme points decreases, respectively, with increasingb.

In our model, we have analytically (using the formula
for transformation of probability densities through
nonlinearity) calculated the ROCs for the NP optim
detector based on the SQUID output for different valu
of the parameters of the input noise, signal, and
nonlinearity. Here, the measured quantityj is the output
xsstd at a fixed timet when the inputxistd has a fixed
2851
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FIG. 1. One period of the rf SQUID transfer characteristi
xs ­ gsxid, with x0 ­

1
2 [and ystd ­ 0], for b ­ 0.5 (dotted

line), 0.7 (dashed line), and0.9 (solid line). The minimum and
maximum are separated by a (b dependent) distanceDxi .

value equal to0 underH0 (no signal) andm s.0d under
H1 (signal), respectively. Thus, underH0 the output
is characterized by a probability distributionp

sod
0 and

underH1 by another distributionp
sod
1 . The corresponding

distributionsp
sid
0 , p

sid
1 on the noise-corrupted inputxistd 1

ystd under H0 and H1, respectively, are two Gaussian
distributions with the same standard deviations but with
differing means0 and m, respectively. We have varied
input

e

FIG. 2. ROCs for the optimal (LR) detector on the output of an rf SQUID with Gaussian noise on the input and different
dE -SNR levels. Thea priori probability q for noise only is always 0.6, and the corresponding value1 2 q for signal plus noise
is 0.4. The left column of ROCs is for constant inputdE ­ 0.318 sSNR ­ 0.5d and the right column is for inputdE ­ 0.538
sSNR ­ 2d, whereb in each column is0.9 (top), 0.7 (middle), and0.5 (bottom), respectively. For eachs2, the dE divergence
is obtained from the relations (1), (2), and (5) by reading off thePF , PD pairs obtained from the curve (dark solid lines) on th
surface that correspond to the optimal thresholdg̃ ­ qys1 2 qd.
2852
c

the input noise variances2 but changedm accordingly
so that on the noise corrupted inputP̃E, dE , and SNR
(here defined asm2ys2) have all been held constant in
each family of ROCs. (This is possible for a Gaussia
distribution.) The results are displayed in Figs. 2 and 3

Two asymptotes exist in all the ROC families. One
obtained when the input noise variance approaches z
and the ROCs tend to those for two Gaussian distributio
(since the transfer function then acts essentially linearl
as can be seen in the leftmost part of all ROC familie
The other asymptote is obtained when the noise varian
tends to infinity andp

sod
0 , p

sod
1 both collapse to the dis-

tribution obtained by transforming a uniform distribution
through one period of the nonlinearity. In this case th
ROCs become a straight line with unit slope as in th
rightmost part of all ROC families. From the ROC
thedE divergence is obtained via (1), (2), and (5) by rea
ing off the PF , PD pairs along a curve (corresponding t
the optimal threshold̃g) on the ROC surface, as indicate
above for a one-parameter family of ROCs.

In Fig. 3 we see clear evidence of “resonant” behavi
in terms of local maximization of outputdE for all values
of b greater than 0.7, with a global maximum for inpu
variance zero. In the zero variance limit, the value of th
outputdE obtained is the same as the input value (exce
possibly for the highestb’s). This is to be expected
since the input distributionsp

sid
0 , p

sid
1 are highly localized

when s2 (and therebym) is small, so that the linear
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FIG. 3. OutputdE divergence vs input variances2 andb for
two different levels of inputdE : 0.318 (left) and 0.538 (right)
(SNR ­ 0.5, 2.0, respectively). The curves corresponding to
the ROCs in Fig. 2 are marked (dark solid line).

action of the transfer functiong near the origin dominates,
and linear transformation preservesdE divergence. In
the large noise limitp

sod
0 , p

sod
1 become identical and the

outputdE assumes its minimal valuej1 2 2qj. The local

maxima in thedE curves occur whenp
sid
0 , p

sid
1 obtain such

a scale and position that the nonlinearity redistributes t
probability mass to the output most efficiently, in the sens
of separatingp

sod
0 , p

sod
1 . This matching betweenp

sid
0 , p

sid
1

andg depends, significantly, on local properties (e.g., slop
and curvature) of the latter, in different regions.

The plots reveal that the local maximum in outpu
dE occurs when the mean (and mode)m of the input
distributionp

sid
1 lies slightly to the right ofDxiy2, and the

value of m at resonance moves to theright as the input
dE increases (p

sid
0 , p

sid
1 become more localized). This

is related to the fact that the slope ofg to the right
of Dxiy2 is less steep than to the left which gives
greater concentration effect when transforming probabili
mass. For increasing inputdE the maximum in outputdE

becomes more pronounced since more localized (giv
m) input distributions can better match local propertie
of g. It also becomes more pronounced for higherb’s,
mainly because the first maximum ing is then higher,
yielding a greater range on the output and thus grea
possibilities for redistributing probability mass. The loca
minima in the outputdE curves occur roughly whenm is
at Dxiy2. Whenb becomes too small no local maximum
exists, essentially because the height of the first maximu
in g decreases rapidly withb and thereby compresses
the output distributionp

sod
1 to a region where most of

p
sod
0 resides. The behavior ofPD as a function of noise

strengths2 for constantPF in the ROCs in Fig. 2 is
qualitatively similar to thedE behavior of Fig. 3 and also
shows several qualitative similarities with earlier result
[3] obtained for a very different system and detector. Th
resonance behavior displayed here is reminiscent of o
earlier observations [7] on the SNR response of the sam
system under periodic forcing. We conjecture that sever
parts of this behavior are “generic” for nonlinear system
in particular, we expect to see it in hysteretic devices.
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In conclusion, we have demonstrated that SR-lik
effects are present even in the most basic instances
information processing in a nonlinear device, and we hav
related these effects to fundamental limits of performanc
in detection. We used thedE -divergence curves derived
from ROC curves for the optimal detector operating o
the output of a nonhysteretic SQUID to demonstrat
“resonant” behavior and found stronger “resonances
for higher degrees of nonlinearity. In the small and
large noise limits, respectively, we saw the expecte
asymptotes, and in all cases the output distancedE was
found to be maximal in the zero noise limit and minima
in the large noise limit, as predicted by the properties o
the dE divergence. The results were derived for a 1D
case; however, the ideas are quite general. In fact, t
dimension of the underlying detection problem (in the
sense of the number of samples of the observed outp
is not significant, and the ideas are (using more elabora
theory/computational methods) applicable also to infinite
dimensional cases with continuous time observations a
more complex signals. This will be the subject of future
publications.
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